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Abstract. We extract the neutron charge form factor Gn
E(Q

2) from the charge form factor of deuteron
Gd

C(Q
2) obtained from T20(Q

2) data at 0 ≤ Q2 ≤ 1.717 (GeV/c)2. The extraction is based on the relativistic
impulse approximation in the instant form of the relativistic Hamiltonian dynamics. Our results (12 new
points) are compatible with existing values of the neutron charge form factor of other authors. We propose
a fit for the whole set (36 points) taking into account the data for the slope of the form factor at Q2 = 0.

PACS. 14.20.Dh Properties of specific particles: protons and neutrons – 13.40.Gp Specific reactions and
phenomenology: electromagnetic form factors

The behavior of the neutron charge (electric) form fac-
tor Gn

E(Q
2), (Q2 = −q2, q is the momentum transfer) is of

great importance for the understanding of the electromag-
netic structure of nucleons and nuclei. However, Gn

E(Q
2)

is still known rather poorly. The major difficulty faced in
a measurement of neutron form factors is the lack of a
free-neutron target. Gn

E(Q
2) has to be extracted from the

data for composite nuclei, for example deuteron or 3He [1–
15]. The direct measurement of great precision (� 1.5%)
is possible only for the slope dGn

E(Q
2)/dQ2 at Q2 = 0, as

determined by thermal-neutron scattering [16].
While obtaining the information about the neutron

from the scattering data on composite systems one en-
counters two kinds of difficulties. First, the results depend
crucially on the model for NN interaction [15,17,18]. Sec-
ond, there exists a dependence on the relativistic effects,
exchange currents, nucleon isobar states, final-state inter-
action in inelastic channels etc. [3,14]. The use of polarized
beams and polarized targets in recent experiments dimin-
ishes uncertainties due to those effects [2–4,6–8,11,15].
In the present paper the neutron charge form factor

is extracted from the experimental data on the deuteron
charge form factor obtained through polarization experi-
ments on elastic ed scattering [19–21]. Let us note that,
as far as we know, it is for the first time that the neutron
charge form factor is determined from an analysis of the
deuteron charge form factor. In the JLab experiments [21]
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the deuteron charge form factor is obtained up to Q2 =
1.717 (GeV/c)2. In this range of momentum transfer the
theoretical description of the polarization tensor T20(Q2)
depends essentially on the choice of the form of NN in-
teraction and relativistic approach is required. All mod-
ern relativistic calculations of the deuteron structure in
terms of nucleon degrees of freedom are based on two
main classes of approaches [22,23] (especially see fig. 11
of [23]). The first class is based on field-theoretical con-
cepts (following paper [23] —propagator dynamics). This
class contains the Bethe-Salpeter equation and quasipo-
tential approaches. The second-class relativistic Hamilto-
nian dynamics (RHD) is based on the realization of the
Poincaré algebra on the set of dynamical observables of the
system with a finite numbers of degrees of freedom. One
can find the description of RHD method in the reviews [24]
(see also [25]) and especially the case of deuteron in the re-
views [22,23]. As is noted in [23], the connection between
the propagator dynamics and RHD is ambiguous. Each of
the approaches has its own advantages as well as difficul-
ties. Our calculations are based on the method of relativis-
tic Hamiltonian dynamics. We use our own variant [26],
of the instant form of RHD (see also [27,28]). This vari-
ant permits to take correctly into account the relativistic
effects in the elastic ed scattering in the relativistic im-
pulse approximation using the method proposed in [26].
The main feature of this approach is the method of con-
struction of the matrix element of the electroweak current
operator. The electroweak current matrix element satis-
fies the relativistic covariance conditions and in the case
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of the electromagnetic current also the conservation law
automatically. The properties of the system as well as the
approximations are formulated in terms of form factors.
The approach makes it possible to formulate relativistic
impulse approximation in such a way that the Lorentz co-
variance of the current is ensured. In the electromagnetic
case the current conservation law is also ensured.
In our approach in the relativistic impulse approxima-

tion using the method [26] one can obtain the following
equation for the deuteron charge form factor:

Gd
C(Q

2) = GCC(Q2)
[
Gp

E(Q
2) +Gn

E(Q
2)

]
+GCM (Q2)

[
Gp

M (Q
2) +Gn

M (Q
2)

]
. (1)

HereGp,n
E,M are charge and magnetic form factors of proton

and neutron. The fact that nucleons magnetic form factors
enter eq. (1) is due to the relativistic effect.
The functions GCC , GCM in (1) are given by

GCC(Q2) =
∑
l,l′

∫
d
√
sd

√
s′ ϕl(s) gll′

CC(s,Q
2, s′)ϕl′(s′),

(2)

GCM (Q2) =
∑
l,l′

∫
d
√
sd

√
s′ ϕl(s) gll′

CM (s,Q
2, s′)ϕl′(s′),

(3)
here ϕl(s) is the wave function in the sense of RHD
(see [26]):

ϕl(s) = 4
√
s ul(k) k , k =

1
2

√
s− 4M2 ,

∑
l

∫
u2

l (k) k
2 dk = 1 , (4)

M is the nucleon mass, l = 0, 2 the nucleon angular
momentum in the deuteron, ul(k) the wave function for
the model NN interaction. The functions gll′

CC , gll′
CM are

given by the following equations (5)–(10) (note that the
same equations were obtained independently in [29]):

gll′
CC(s,Q

2, s′) = R(s,Q2, s′) (s+ s′ +Q2)Q2

× all′(s,Q2, s′), (5)

gll′
CM (s,Q

2, s′) =
1
M
R(s,Q2, s′)ξ(s,Q2, s′)Q2

× bll′(s,Q2, s′) , (6)

a00 =
(
1
2
cosω1 cosω2 +

1
6
sinω1 sinω2

)
,

a02 = − 1
6
√
2
(P ′

22 + 2P
′
20) sinω1 sinω2 ,

a22 =
[
1
2
L1 cosω1 cosω2 +

1
24
L2 sin(ω2 − ω1)

+
1
12
L3 sinω1 sinω2

]
,

b00 =
(
1
2
cosω1 sinω2 − 1

6
sinω1 cosω2

)
,

b02 =
1
6
√
2
(P ′

22 + 2P
′
20) sinω1 cosω2 ,

b22 = −
[
−1
2
L1 cosω1 sinω2 +

1
24
L2 cos(ω2 − ω1)

+
1
12
L3 sinω1 cosω2

]
.

R(s,Q2, s′) =
(s+ s′ +Q2)√

(s− 4M2)(s′ − 4M2)

× ϑ(s,Q2, s′)

[λ(s,−Q2, s′)]3/2

1√
1 +Q2/4M2

,

ξ(s,Q2, s′) =
√
ss′Q2 −M2λ(s,−Q2, s′) ,

λ(a, b, c) = a2 + b2 + c2 − 2(ab+ ac+ bc) ,

L1 = L1(s,Q2, s′) = P20P
′
20 +

1
3
P21P

′
21 +

1
12
P22P

′
22 ,

L2 = L2(s,Q2, s′) = P21 (P ′
22 − 6P ′

20)− P ′
21 (P22 − 6P20) ,

L3 = L3(s,Q2, s′) = 2P21 P
′
21+4P20 P

′
20−P20P

′
22−P22P

′
20.

Here ω1 and ω2 are the Wigner spin rotation parameters:

ω1 = arctan
ξ(s,Q2, s′)

M
[
(
√
s+

√
s′)2 +Q2

]
+
√
ss′(

√
s+

√
s′)

,

ω2 = arctan
α(s, s′)ξ(s,Q2, s′)

M(s+ s′ +Q2)α(s, s′) +
√
ss′(4M2 +Q2)

,

and α(s, s′) = 2M +
√
s+

√
s′.

P2i = P2i(z) , P ′
2i = P2i(z′) , i = 0, 1, 2, are the

Legendre functions:

P20(z) =
1
2

(
3 z2 − 1) , P21(z) = 3 z

√
1− z2 ,

P22(z) = 3
(
1− z2) . (7)

z = z(s,Q2, s′) =
√
s(s′ − s−Q2)√

λ(s,−Q2, s′)(s− 4M2)
,

z′ = z′(s,Q2, s′) = − z(s′, Q2, s) . (8)

ϑ(s,Q2, s′) = θ(s′−s1)−θ(s′−s2), θ is the step function;

s1,2 = 2M2 +
1
2M2

(2M2 +Q2)(s− 2M2)

∓ 1
2M2

√
Q2(Q2 + 4M2)s(s− 4M2) . (9)

The functions s1,2(s,Q2) give the kinematically available
region in the plane (s, s′) (see [26,30]).

gll′
Ci(s,Q

2, s′) = gl′l
Ci(s

′, Q2, s) , i = C,M . (10)
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Using eq. (1) one can write the neutron charge form
factor in the form

Gn
E(Q

2) =
Gd

C(Q
2)

GCC(Q2)
− GCM (Q2)
GCC(Q2)

× [
Gp

M (Q
2) +Gn

M (Q
2)

] −Gp
E(Q

2) . (11)

We calculate the nucleon charge form factor in the
points Q2, where the deuteron charge form factor Gd

C(Q
2)

is measured. In these points the nucleon form factors

Gp
E(Q

2) , Gp
M (Q

2) , Gn
M (Q

2)

are obtained through the fits of their experimental val-
ues. The functions GCC(Q2), GCM (Q2) can be calculated
using eqs. (2), (3) and some deuteron wave functions.
Let us discuss now the problem of choosing the deute-

ron wave functions to use for the calculation of GCC(Q2) ,
GCM (Q2) (11).
Today there exist a number of models for the NN in-

teraction potential. Some of them are: Paris potential [31],
the versions I, II and 93 of the Nijmegen model [32],
charge-dependent version of Bonn potential [33]. The
deuteron wave functions for these potentials give the re-
sults for deuteron electromagnetic properties that differ
essentially from one another. It is a difficult task to give
the preference to one of them.
Quite different kind present the deuteron wave func-

tions (MT) [34] obtained in the frame of the potentialless
approach to the inverse scattering problem (see [35] for
details).
The important feature of these wave functions is the

fact that they are “almost model independent”: no form of
NN interaction Hamiltonian is used. The MT wave func-
tions are given by the dispersion type integral directly in
terms of the experimental scattering phases and the mix-
ing parameter for NN scattering in the 3S1-3D1 channel.
A Regge analysis of the experimental data on NN scatter-
ing was used to describe the phase shifts at large energy.
It is worth to notice that the MT wave functions were

obtained using quite general assumptions about analytical
properties of quantum amplitudes such as the validity of
the Mandelstam representation for the deuteron electro-
disintegration amplitude. These wave functions have no
fitting parameters and can be altered only with the ame-
lioration of the NN scattering phase analysis. The MT
wave functions were used in nonrelativistic calculation of
deuteron form factors [36] and for the relativistic deuteron
structure in [13,37].
Let us notice that the process of constructing these

wave functions is closely related to the equations obtained
in the framework of the dispersion approach based on the
analytic properties of the scattering amplitudes [30,38–40]
(see also [26] and especially the detailed version [41]). In
fact, this approach is a kind of dispersion technique using
integrals over composite-system masses.
As T20(Q2) for polarized ed scattering depends weakly

on the form of nucleon form factors, one can use the ex-
perimental data for T20(Q2) to choose the most adequate
deuteron wave functions (our determination of T20(Q2)

Fig. 1. Data and the results of calculation of the deuteron po-
larization tensor T20(Q

2) for the elastic ed scattering with the
use of the nucleon form factors from the paper [17] and different
wave functions. The experimental points are: open circles [42],
open squares [45], open triangles [44], filled circles [19], filled
squares [20], filled diamonds [21], filled triangles [43]. Curves:
solid: Nijmegen–II [32], dashed: MT [34], dotted: [31], dash-
dotted: Nijmegen–I [32], dash-double-dotted: [33].

is the same as in [19]). Figure 1 presents the results of
our calculation of T20(Q2) with the use of the wave func-
tions [31–34] and nucleon form factors from [23] as well as
the experimental points from the papers [19–21,42–45].
One can see that the best description of T20(Q2) is

given by the wave functions [34].
Our estimations show that other wave functions (e.g.,

used in [46,47]) also give poorer description of T20(Q2)
than the MT wave functions [34]. Let us emphasize that
the MT wave functions [34] were obtained more than 20
years ago and so no possible fitting reasons for T20(Q2)
could influence the choice. To extract the neutron charge
form factor from the deuteron charge form factor in an
“almost model independent” way, we will use MT wave
functions [34]. These wave functions used in the relativistic
calculation of the function A(Q2) for the elastic ed scat-
tering give the correct behavior up to Q2 � 3 (GeV/c)2
(see fig. 2).
Let us discuss briefly the problem of meson exchange

currents (MEC) which can cause some ambiguities in
deuteron calculations [23]. It is accepted generally that
one has to take MEC into account in a way compati-
ble with the basic principles of the chosen approach. So,
the value of the MEC corrections is different for differ-
ent approaches. We hope that we can neglect MEC in
our approach when the relativistic corrections are small.
The base for this is the following theorem (Siegert, [48];
see especially the case of deuteron in [49]). If the elec-
tromagnetic current satisfies the conservation law in the
differential form and if the dynamics of the two-particle
system is nonrelativistic (the Schrödinger equation, the
potential) then the charge density of the exchange current
(the null component) is zero independently of the kind of
the potential. So, in the range of the energy where the
nonrelativistic dynamics is valid (the continuity equation
is valid everywhere) the exchange current contributions to
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Fig. 2. Data and the results of calculation of the function
A(Q2) for the elastic ed scattering with the use of the nucleon
form factors from the paper [17] and wave functions MT from
ref. [34]. The experimental points are the same as in ref. [46].

the charge and quadrupole form factors are zero. We sup-
pose that when the nonrelativistic dynamics is valid ap-
proximately then the MEC contributions are small. In fact
the relativistic contributions to the deuteron form factors
in our approach are small in the region under considera-
tion Q2 ≤ 1.717 (GeV/c)2. Namely, the relativistic cal-
culations with different wave functions [31–34] give a rela-
tivistic correction of about 10% at Q2 � 1.7 (GeV/c)2. At
smaller values of Q2 the corrections are even smaller. So,
it will be consistent with our approach not to take into
account the meson exchange currents in the charge and
quadrupole deuteron form factors. But the contribution
of the MEC to the magnetic form factor can be important
in the region under consideration.
Usually it is supposed that it is necessary to take MEC

into account in order to provide the gauge invariance and
the current conservation [24]. However today the construc-
tion of the relativistic impulse approximation without
breaking the relativistic covariance and current conser-
vation law is a common trend of different approaches [23,
25,26,46,47]. In our approach this is realized through the
use of the Wigner-Eckart theorem for the Poincaré group.
It enables one for given current matrix element to sepa-
rate the reduced matrix elements (form factors) which are
invariant under the Poincaré group action. The matrix el-
ement of a given operator is represented as a sum of terms,
each one of them being a covariant part multiplied by an
invariant part. In such a representation the covariant part
describes the transformation properties of the matrix el-
ement. The conservation law is satisfied explicitly due to
the fact that the vector of the covariant part is orthog-
onal to the vector Qµ. All the dynamical information on

Fig. 3. Data and the results of calculation of the function
B(Q2) for the elastic ed scattering with the use of the nucleon
form factors from the paper [17] and wave functions MT from
ref. [34]. The experimental points are the same as in ref. [46].
The solid line represents the calculation in MIA, the dashed
line the calculation with ρπγ contribution from ref. [50]. ρπγ
form factor is from ref. [23].

the transition is contained in the invariant-part form fac-
tors. In our variant of the impulse approximation (modi-
fied impulse approximation) the reduced matrix elements
are calculated with no change of covariant part (for details
see [26]) although neglecting MEC (see eqs. (5)–(10)). The
right transformation properties are thus guaranteed.
In fig. 3 the results of the calculation of the function

B(Q2) for the elastic ed scattering are shown. B(Q2) de-
pends on the magnetic form factor only. We use the MT
wave functions and take into account the ρπγ exchange
currents. The ρπγ form factor is taken from [23]. The re-
sults are consistent with the data at Q2 ≤ 2 (GeV/c)2.
The results given in the figs. 1–3 show that the MT wave
functions describe the deuteron electromagnetic proper-
ties adequately at Q2 ≤ 2 (GeV/c)2.
In eq. (11) we use for the nucleon form factorsGp

M (Q
2),

Gn
M (Q

2) one (with the best χ2) of the fits of the recent
paper [51] —DRN-GK(3).
Let us consider the proton charge form factor Gp

E(Q
2).

The recent measurement in Jefferson Lab [52] have shown
that Gp

E(Q
2) decreases with the increasing of Q2 more

rapidly than it was accepted previously. In our calculations
we use a new parameterization (see, e.g., [23]) taking into
account this information:

Gp
E(Q

2) =
(
1.0− 0.1262Q2

)
GD(Q2) , (12)

GD(Q2) =
(
1 +

Q2

0.71

)−2

.

Here Q2 is given in (GeV/c)2.
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Table 1. The values of Gn
E(Q

2)/GD(Q2) obtained in the
present paper. The values of the deuteron charge form fac-
tor Gd

C(Q
2) used for the extraction of Gn

E(Q
2) are also given.

Q2 is given in (GeV/c)2.

# Q2 Gd
C Ref. Gn

E/GD

1 0.160 0.163± 0.017 [20] 0.020± 0.116
2 0.215 0.100± 0.012 [20] −0.012± 0.129
3 0.303 0.035± 0.020 [20] −0.305± 0.401

4 0.556 (0.127+0.047
−0.056) · 10−1 [19] 1.17± 0.92

5 0.651 (−0.117± 0.162) · 10−2 [21] −2.66± 1.65

6 0.693 (0.166+0.161
−0.142) · 10−2 [19] −4.57± 5.10

7 0.775 (−0.253± 0.063) · 10−2 [21] 0.642± 0.361

8 0.831 (−0.147+0.106
−0.104) · 10−2 [19] −0.167± 0.432

9 1.009 (−0.396± 0.028) · 10−2 [21] 0.390± 0.107

10 1.165 (−0.348± 0.031) · 10−2 [21] 0.287± 0.131

11 1.473 (−0.310+0.053
−0.061) · 10−2 [21] 0.487± 0.263

12 1.717 (−0.194+0.036
−0.052) · 10−2 [21] 0.300± 0.294

Let us remark that our variant of extraction of the neu-
tron charge form factor is sensible to the value of the pro-
ton charge form factor (see eq. (11)). The result is slightly
different, for example, (see our paper [53]) for the param-
eterization DRN-GK(3) from [51].
The results of our calculations of the neutron charge

form factor in the points where the deuteron charge form
factor is measured are given in the table 1 (see also fig. 4).
The accuracy of our calculations are determined by

the accuracy of measurements of charge deuteron form
factor [19–21] and nucleon form factors which are the fol-
lowing atQ2 ≤ 1.717 (GeV/c)2: for Gp

E(Q
2) 1–10% [1,54–

56], for Gp
M (Q

2) 1–3% [1,55–58], for Gn
M (Q

2) 1–10% [3,
59–62].
We obtain the first three points at low momentum

transfer from the data for the deuteron charge form factor
given in paper [20]. In this range of momentum transfer
the behavior of the deuteron charge form factor and so
Gn

E(Q
2) do not depend on the choice of the wave func-

tions [31–34].
The first, second and the third points are compatible

(within the experimental errors) with the points of [4,6,
7,11]. Our point # 7 is in fact the same as in [1] but our
error is larger.
Our values of Gn

E in other points (at Q
2 ≥ 1 (GeV/c)2

are strictly positive. This result differs from, e.g., the re-
sults of paper [3] consistent with Gn

E = 0. Let us note that
our errors at Q2 ≥ 1 (GeV/c)2 are sufficiently small,
smaller than, e.g., in [1,3].
Our values # 4–8 are extracted from the values of

charge deuteron form factor of the two different works [19,
21]. The results of these works are in rather poor agree-
ment with each other in the region of the first dip. So
the values of # 4–8 of Gn

E are not well determined in the
present work. One needs additional experiments in this

Fig. 4. The experimental values and the results of fitting
for the neutron charge form factor. The experimental points:
bold cross [4], open bold diamonds [11], open up triangles [7],
open circles [3], open down triangles [5], open stars [9], open
square [12], filled circles [6], filled diamonds [8], filled up tri-
angles [2], filled stars [1], filled squares: the present work. The
points # 5 and # 6 are out of the figure. The curves: solid
is for the result of fitting of 36 experimental points (including
our points of the table 1) using eq. (13) (a = 0.942, b = 4.65
with χ2 = 70.8), dashed for the result of fitting of 24 points of
other authors (a = 0.942, b = 4.74 with χ2 = 58.2).

region to locate more precisely the position of the node of
the charge deuteron form factor [22].
It is now interesting to fit all the existing values of

neutron charge form factor ( [1–9,11,12] and table 1). We
use for the fitting the following function (see [17] and the
review [22]) with two parameters a and b:

Gn
E(Q

2) = −µn
a τ

1 + b τ
GD(Q2) , τ =

Q2

4M2
. (13)

The neutron magnetic moment µn = −1.91304270(5) [63].
We obtain the parameter a from the slope of the neu-

tron charge form factor at Q2 = 0 [16,51]:

dGn
E

dQ2

∣∣∣∣
Q2=0

= 0.0199± 0.0003 fm2 . (14)

The fitting of the slope (14) gives a = 0.942 with the
accuracy ≈ 1.5%.
This value of a gives the slope of Gn

E(Q
2) at Q2 = 0

which is measured directly in the experiment.
The parameter b is fitted using the χ2 criterion. If we

use all the 36 points we obtain b = 4.65 with χ2 = 70.8.
Note that the fit DRN-GK(3) [51] of 23 points has χ2 =
63.9.
If we exclude the points # 4–8, then the 31-point fit-

ting gives b = 4.65 with χ2 = 63.5. As the errors of these
points are large this fitting differs from the previous one
slightly.
Let us note that our fitting for 24 points of the pa-

pers [1–9,11,12] (not taking into account our points) gives
b = 4.74 with χ2 = 58.2. The two curves lie near to one
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another (see fig. 4) so our points are consistent with the
known points of other authors.
The results of fitting, the experimental points [1–9,11,

12], as well as our new points are shown on the fig. 4. The
points # 5 and # 6 are out of the figure.
To summarize,
1) We extract 12 new points for the neutron charge

form factor from the experimental data for the deuteron
charge form factor. The obtained values are consistent
with the known values of other authors.
2) We perform the fitting for 36 values of the neutron

charge form factor including our points. The fit has the
form (13) with a = 0.942, b = 4.65.

The authors thank D.M. Nikolenko for the interest in the work.
This work was supported in part by the Program “Russian
Universities—Basic Researches” (grant # UR.02.01.013).
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